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Abstract

Two iterative procedures for constructing Rasch scales

are presented. A loglikelihood ratio test based upon a

quasiloglinear formulation of the Rasch model is given by

which one item at a time can be deleted from or added to an

initial item set. In the socalled topdown algorithm, items

are stepwise deleted from a relatively large initial item set

whereas in the Lottomup algorithm items are stepwi-.1 added

to a relatively small initial item set. Both algorithms are

evaluated by means of generated data. The results for the

topdown algorithm are bad whereas the results for the

bottomup algorithm are more encouraging.

Key words Item selection, Loglikelihood ratio test, Quasi

loglinear models, Rasch model.
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Stepwise Item Selection Procedures for Rasch

Scales Using Quasiloglinear Models

When constructing Rasch (1960) scales from a large set

of items, it often happens that the Rasch model does not fit

to the entire item set. This lack of fit is due to the rather

strong assumptions of the Rasch model (cf. Molenaar, 1983),

e.g., unidimensionality of the underlying ability and local

stochastical independence of item scores. Therefore, usually

a twostep procedure is recommended for constructing Rasch

scales.

The first step involves the identification of one or

more subsets of items approximately satisfying the Rasch

model. This identification can, for instance, be based upon a

multidimensional representation of the items (cf. Knol, 1986,

1987a) by dividing the space in subspaces.

The second step consists of iteratively deleting one

item at a time from a relatively large initial subset or by

adding one item at a time to a relatively small initial

subset. Usually, deletion of items is based upon item

statistics incorporated in computer programs for the Rasch

model. For example, the program PML (Molenaar, 1981) gives

biserial correlations, Ui statistics (Molenaar, 1983) and

contributions of the items to overall goodness of fit tests.

However, decisions based upon these indices are highly

subjective, partly because of the sometimes contradictory

information they provide.
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Especially for large scale applications, there is a need

for automatic procedures. Such procedures should preferably

be based upon sound statistical tests. Some efforts in this

direction have already been made. Verhelst (1983) proposed a

stepwise procedure based upon a loglikelihood ratio test.

However, it seems that his test is statistically not entirely

well founded (Knol, 1987b). Moreover, the procedure does not

seem to work satisfactory in practice (Knol, 1987b). Another,

potentially more promising procedure, comes from quasi

loglinear modeling (Bishop, Fienberg & Holland, 1975;

Kelderman, 1987), in which specific hypotheses can be tested.

Kelderman (1984) showed that the Rasch model can be written

as a quasiloglinear model. This offers the possibility to

detect specific violations of items to the Rasch model.

In this paper, a loglikelihood ratio test based upon a

quasiloglinear fornalation 'f the Rasch model will be

presented in which the conditional Rasch model (Fischer,

1974) is tested against an alternative model which

incorporates violations to the Rasch model of a particular

item. A stepwise topdown procedure based upon this log

likelihood ratio test will be given, in which one item at a

time is deleted from a relatively large initial item set.

Also, a bottomup algorithm will be given in which stepwise

one item at a time is added to a relatively small initial

item set already satisfying the Rasch model. In order to

evaluate both algorithms, the procedures will be applied to

some generated data sets.
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The Rasch Model as a Quasiloglinear Model

In loglinear models, the logarithms of expected cell

frequencies or counts m are explained in terms of linear

combinations of function! of observable categorical

variables. A subclass of loglinear models arises in the case

of a priori or structurally zero cells. These models are

called quasiloglinear models (cf. Bishop, Fienberg &

Holland, 1975, Ch. 5). Kelderman (1984, p. 226) showed that

the conditional Rasch model (Fischer, 1974) can be written as

a quasiloglinear model. For our purpose it is assumed that

the Rasch model contains no subgroups based upon external

information such as sex or age. The only subgroups we deal

with are score groups. In the analysis of variance or uterms

parametrization (Bishop, Fienberg & Holland, 1975) the

logarithms of the expected cell counts m for the conditional

Rasch model (without external subgroups) can be written as

k
(1) In m = u + { E uj(xj)} uk+1(t)

xl...xkt j=1

where u is a constant term, uj(xj) is the main effect of

response xj (xj=0,1) of item j (j=1,...,k) and u(k+1)(t) is

the main effect of score t (t=0,...,k).

The number of estimable parameters of a quasiloglinear

model is equal to the difference between the number of

parameters and the number of constraints imposed by the
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model. The number of estimable parameters can be obtained

numerically by computing the rank of tae socalled design

matrix (cf. Bock, 1975, p. 523) of the quasi loglinear model.

An alternative procedure which can be applied for relatively

simple models such as (1). consists of counting the number of

estimable parameters by correcting for the constraints. This

approach will be followed in the present paper. Following the

procedure of Kelderman (1984. pp. 231-232) the constant u

term counts as one parameter. Furthermore, each term uj(xj)

(j=1 ..... k) counts as one and u(k+1)(t) (t=0 k) as

k+1-1=k parameters. Finally, we have the constraint Ej xj=t.

Adding the numbers yields the number of estimable parameters

of model (1) as 1 +k+k-1=2k. Model (1) can be tested against

the fully saturated model by the loglikelihood ratio test or

by Pearson's goodness of fit test (Kelderman, 1984). Botn

test statistics are asymptotically x? distributed with

degrees of freedom equal to the difference between the number

of structurally nonzero cells and the number of estimable

parameters of model (1). However, both test statistics win

not be used throughout the paper, since the test statistics

are only asymptotically x2 distributed and the number of

degrees of freedom is 2X-2k, which is large already for

moderate values of k. Instead, model (1) will be tested

against a model which allows for each item i (i=1 ..... k)

separately all firstorder interaction terms containing the

item response xi.

For each i (i=1 k). the model with all firstorder

interaction terms containing xi is
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k
(2) In m = u + { E ui(xi)} + ukil(t)

j=1

+ { .E uij(xixj)} + Ui(k4.1)(Xit)
ai

where uij(xixj) (i*j) is the (firstorder) interaction

between responses xi and xj of items i and j and ui(k.4.1)(xit)

is the (firstorder) interaction between response xi of item

i and score t. An interaction term uij(xixj) can be

interpreted as a measure of local dependence between

responses xi and xj (Kelderman, 1984, p. 224). Hence, the sum

Ej uij(xixj) (jai) is a measure of local dependence between

item i and the remaining items. The interaction term

ui(k+1)(xit) can be interpreted as a measure of invariance of

the item response function of item i over score groups

(Kelderman, 1984, p. 224). In model (2) uterms are

incorporated which reflect both violation of

unidimensionality of item i and violations of local

independence of that item with the remaining items.

It can be proved that model (2) is separable (cf.

Bishop, Fienberg & Holland, Ch. 5) and that the log

likelihood of model (2) equals the sum of the loglikelihoods

for model (1), computed separately for the data sets with

xi=0 and xi=1. It is easily seen that the number of estimable

parameters of model (2) equals twice the number of estimable

parameters of model (1) for k-1 items, i.e. 2(2(k-1))=4k-4.
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Since computation time for model (2) is large compared to

model (1). it is more efficient to compute the loglikelihood

of model (2) as the sum of the loglikelihoods of model (1)

computed separately for the two data sets with xi=0 and xi=1.

For each item i (i=1 k). the Rasch model (1) can be

tested against model (2) by the loglikelihood ratio test

(3) Gi = 2(L1 L2(i)]= 2(K1 K2(i)] .

where L1 and L2(i) denote the loglikelihoods of models (1)

and (2). respeztively. whereas Ki and K2(i) are the kernels

(Kelderman & Steen. 1988) of the loglikelihoods of models

(1) and (2).respectively. Under the assumption of model (1).

the test statistic Gi2 is asymptotically x2 distributed with

degrees of freedom equal to the difference between the

numbers of estimable parameters of model (2) and model (1).

i.e. (4k-4)-2k=2k-4. Since computation of the loglikelihood

is often impossible and very expensive for larger values of

k. (3) will be obtained by computation of the kernels.

In the next section, two algorithms for constructing a

Rasch scale will be presented based upon the loglikelihood

ratio test (3).
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Two Algorithms

Analogcus to the algorithm of Verhelst (1983), a top

down algorithm can be constructed in which stepwise one item

at a time is deleted from an initial set of items. The

computations will be done with the program LOGIMO (Kelderman

& Steen, 1988).

Step 1. Start with an initial item set S consisting of (say)

k items.

Step 2. Run the program for model (1) for the item set S.

Compute for each item ieS (i=1 ..... k) the Gil test

statistic (3). In our implementation, this involves

running the program LOGIMO 2k+1 times. Select the

item i* with the largest Gil value.

Step 3. Compute for the selected item i* the pvalue of the

test statistic Gil. If p<.05 then model (1) is

rejected in favour of model (2). This means that

unidimensionality of item i* and/or local

independence of that item with the remaining items is

violated. If p<.05 then delete item i* from the item

set S (i.e. update S) and repeat steps 2 and 3 ntil

no item from set S can be deleted any more.

Step 4. Evaluate the constructed scale with Andersen's (1973)

loglikelihood ratio test and with the MartinLof

(1973) X2 test.

1
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It is also possible to define a bottomup algorithm (cf.

Verhelst, 1983), in which stepwise an item is added to a

(small) set of items already satisfying the Rasch model. A

bottomup algorithm based upon the loglikelihood ratio test

(3) is statistically more appropriate than the topdown

algorithm, because the test statistic (3) is only x2

distributed when the nullhypothesis (i.e. model (1)) is true

(cf. Verhelst, 1983). For the topdown algorithm the

assumption that the Rasch model (1) holds, can hardly be

made. However, for the bottomup algorithm this assumption

can be made, provided that it is possible to select a (small)

initial item set that satisfies the Rasch model.

A bottomup algorithm based upon the loglikelihood

ratio test (3) can be stated as:

Step 1. Start with an initial set S' of k' items that already

satisfies the Rasch model and a nonoverlapping set C

of n items containing the items that ;an potentially

be added to the Rasch scale.

Step 2. Compute for each item ieC (i.1 ..... n) the Gi2 test

statistic (3) for the k'+1 items of the set S' + {i}.

In our implementation, this involves running the

program LOGIMO 3n times. Select the item i* with the

smallest Gi2 value.

Step 3. Compute for the selected item i* the pvalue of Gi2.

If p>.05 then model (1) cannot be rejected. This

means that the set of items S+(i. ) satisfies the

Rasch model. If p>.05 then add item i* to the item
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set S (i.e. update S' and C) and repeat steps 2 and 3

until no item from set C can be added any more.

Step 4. Evaluate the constructed scale with Andersen's (1973)

log-likelihood ratio test and with the Martin-Lof

(1973) x2 test.

For each iteration cycle of the bottom-up algorithm, the

program has to be run 3n times whereas the number of runs for

the top-down algoritm is only 2k+1. However, since the

cardinality k' of the start set S' of the bottom-up algorithm

is typically much smaller (especially during the first

iteration cycles) than the cardinality k of the start set S

of the top-down algorithm, it can be expected that CPU-time

for the bottom-up algorithm will be less than that for the

top-down algorithm.

In the next section the performances of the top-down and

bottom-up algorithms will be evaluated empirically using some

generated data sets.

A Simulation Study

Data have been generated according to the two-parameter

multidimensional logistic model (Reckase, 1973). In this

model, the item response function for item i is given by

(4) pi(9) = {1 + exp[-1.6(aie pi)]} -1
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where ai=iail,..,aim). is a vector of item discriminztion

parameters, m is the dimensionality of the ability space, pi

is the item difficulty parameter and 0=(81,. .801) is the m

dimensional vector of abilities. Note that model (4) allows

for items with different dimensionality. For example, with

(4) items can be generated which have n nonzero -

discrimination parameter on one dimension and zeroes on the

remaining dimensions. Note also that (4) reduces to the Rasch

model if m=1 and ai=a (constant) for all icems i. Model (4)

allows for items violating the Rasch model in the sense of

different slopes (discrimination) and different

dimensionality (violating the local independence), In Table 1

the item parameters of four generated u2idimensional data

sets are given, and in Table 2 the item parameters of two

generated twodimensional data sets.

Insert Tables 1 and 2 about here

The data sets are constructed such that the items 1 through

10 of each data set form a Rasch scale with discrimination

parameters ai=a=1 (i=1,...,10). In all data sets the items 11

through 15 differ in discrimination (sets 1 through 4 and 6)

and/or dimensionality (sets 5 and 6) from the (dominant)

Ra. scale.
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Abilities were randomly sampled from a multivariate

normal (0,I) distribution. The sample size was chosen to be

1000, which was expected to be large enough to get

sufficiently reliable results. It is likely that the repeated

use of the test (3) in the algorithms will result in chance

capitalization. For each data set a second, independent data

set with sample size 1000 was generated to evaluate the final

scales found by the algorithms.

Both the topdown and the bottomup algorithm were

applied to all data sets. The topdown algorithm starts with

the item set S, consisting of all the 15 items, whereas the

bottomup algorithm has the startset S', consisting of the

items 4 through 7, and the remaining items form the set C of

candidate items.

Since in model (2) only firstorder interaction terms

have been incorporated and no overall goodness of fit test is

available for model (2) because of the too large number of

degrees of freedom, it is necessary to evaluate the item

selection procedure by an external criterion. In the program

PML (Molenaar, 1981) the x2 goodness of fit test of Martin

Lof (1973) and the loglikelihood ratio test of Andersen

(1973) are implemented. Both tests were used to evaluate the

obtained Rasch scale after the selection procedures.

From Table 1 it can be seen that data set 1 contains,

besides the dominating Rasch scale (items 1 through 10) a

subscale consisting of the items 11 through 15 which have

higher discrimination parameters (a=1.4) than the

discrimination parameters of the dominating scale (a=1). Data

_I 7
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set 2 contains a subscale consisting of relatively low

discriminations (a=.6). The results of the algorithms for the

data sets 1 and 2 are given in Tables 3 and 4 , respectively.

Insert Tables 3 and 4 about here

In order to give more insight in the item selection

procedures, the p-values of Martin-Lof's x2 and Andersen's

log-likelihood ratio test are given after each added or

deleted item. Additionally, as a baseline the p-values of

both tests are given for the theoretically expected scale(s).

Also, the p-values of both tests are given for the cross-

validated scales. From Tables 3 and 4 it is seen that the

top-down algorithm clearly fails to detect the dominating

scale. In both cases, the obtained scale consists of a

mixture of items of the dominating scale and the subscale.

The outcomes for the data sets 1 and 2 of the bottom-up

algorithm are better: the obtained scales contain all items

of the dominating scale and (only) two items of the subscale.

In a sense, the bottom-up algorithm iterates too long. After

k=9, the algorithm starts to select items from the subscale.

Contrary to the first two data sets, the data sets 3 and

4 contain no substantial subscale. The difference between

data set 3 and 4 is that the discrimination parameters of the

former are more extreme than those of the latter. The results

1
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of the algorithms for data sets 3 and 4 are given in Tables 5

and 6, respectively.

Insert Tables 5 and 6 about here

From Table 5 it can be seen that the topdown algorithm for

data set 3 yields the dominating scale. The topdown

algorithm applied to data set 4, however, yields a mixture of

items from the dominating scale and three of the remaining

items. Obviously, the algorithm cannot differentiate well

between items of the dcminating scale with discrimination

parameter a=1 and items with a slightly different

discrimination parameter (a=.8 or a=1.2). However, the

resulting scale has good overall goodness of fit values. As

in the case of data sets 1 and 2, the bottumup algorithm for

data sets 3 and 4 iterates too long. After an optimum has

been reached (k=9 for data set 3 and k=10 for data sat 4),

the algorithm still adds items whereas it would be better if

the algorithm had been stopped.

The data sets 5 and 6 are twodimensional, where the

items 11 through 15 measire another trait than the items 1

through 10 do. Data set 5 contains a Rasch subscale

consisting of the items 11 through 15 whereas to set 6 dogs

not. The results of the algorithms for data sets 5 and 6 are

given in the Tables 7 and 8, respectively.



Item Selection

15

Insert Tables 7 and 8 about here

From the Tables 7 and 8 it can be seen that in both cases the

topdown algorithm clearly fails to yield the dominating

Rasch scale. For data set 5, the topdown algorithm could not

discriminate well between the two subscales. Firstly, the

items 3, 4, 5, 7 and 8 of the dominating scale with moderate

difficulty parameter:, are deleted. Secondly, all items of the

subscale (items 11 through 15) are deleted. However, the

resulting scale has good overall goodness of fit values and

contains only items of the dominating scale. Nevertheless the

outcome is not satisfactory because the scale consists of

only five items. In both cases the bottomup algorithm

performs well, yielding in both cases the dominating scale

consisting of the items 1 through 10.

Summarized, the topdown algorithm yields the complete

dominating scale in only in one case (data set 3). The

performance of the bottomup algorithm is more encouraging.

For the data sets 5 and 6 where the items 11 through 15

measure another trait than the trait measured by the items of

the dominating scale, the algorithm yields precisely the

dominating scale. For the other data sets where the items 11

through 15 only differ in discrimination parameters from the

items of the dominating scale, the resulting scale consists

of all items of the dominating scale (except for data set 4)

and only one or two items of the second subscale. For data
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set 4, the items ? and 2 do not belong to the resulting

scale.

Discussion

From the results presented in the last section, it is

clear that the bottom-up algorithm is more promising than the

top-down algorithm. Moreover, the bottom-up algorithm is

statistically better justified than the top-down algorithm

(cf. Verhelst, 1983). Finally, the bottom-up algorithm is

typically faster than the top-down algorithm because the

former starts with a smaller initial item set. However, it

has to be noted that CPU-times for the bottom-up algorithm

are still very large.

Furthermore, in the presented simulation study the

bottom-up algorithm starts with an initial item set already

forming a Rasch scale. Of course, in practice we do not hire

this knowledge. Without a priori knowledge, it seems very

difficult to select a small item set that satisfies the Rasch

model.

In the simulation study it seems that the bottom-up

algorithm iterates too long: after cycle 4 or 5 the algorithm

starts to select items from the subscale. An improvement

could be to increase the significance level of the log-

likelihood ratio test (3). Another, probably better

possibility is alternate the bottom-up algorithm with one

or two iterations of the top-down algorithm. This allows the
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procedure to reject items that have been added incorrectly to

the scale in a previous step. An additional advantage of such

a mixed procedure would be that the choice of the startset is

less critical.

In the alternative model (2), only firstorder

interaction terms have been incorporated. A possible

explanation of the rather disappointing outcomes of both

algorithms can be that higherorder interaction terms are

needed to describe the (induced) violations against the Rasch

model. However, incorporating higherorder interactions in

the alternative model will make the algorithms mucr more

expensive and, even worse, it will be impossible to run the

topdown algorithm for large item sets. Finally, it has to be

noted that because of the repeated use of the test (3), it is

likely that chance capitalization occurs. Therefore, with

real data the final scales have to be crossvalidated in an

independent sample.
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Table 1

Itemparameters of the four generated unidimensional data sets

1 through 4.

set

item

1 2 3 4

a a a a 0

1 1 -1.8 1 -1.8 1 -1.8 1 -1.8

2 1 -1.4 1 -1.4 1 -1.4 1 -1.4

3 1 -1.0 1 -1.0 1 -1.0 1 -1.0

4 1 -0.6 1 -0.6 1 -0.6 1 -0.6

5 1 -0.2 1 -0.2 1 -0.2 1 -0.2

6 1 0.2 1 0.2 1 0.2 1 0.2

7 1 0.6 1 0.6 1 0.6 1 0.6

8 1 1.0 1 1.0 1 1.0 1 1.0

9 1 1.4 1 1.4 1 1.4 1 1.4

10 1 1.8 1 1.8 1 1.8 1 1.8

11 1.4 -2.0 0.6 -2.0 0.6 -1.0 0.8 -1.0

12 1.4 -1.0 0.6 -1.0 0.6 1.0 0.8 1.0

13 1.4 0.0 1.6 0.0 1.4 -1.0 1.2 -1.0

14 1.4 1.( ,:, 1.0 1.4 0.0 1.2 0.0

15 1.4 2_ 6 2.0 1.4 1.0 1.2 1.0
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Table 2

Itemparameters of the two generated two-dimensional data sets

5 and 6.

set

item

5 6

al a2 al a2

1 1 0 -1.8 1 0 -1.8

2 1 0 -1.4 1 0 -1.4

3 1 0 -1.0 1 0 -1.0

4 1 0 -0.6 1 0 -0.6

5 1 0 -0.2 1 0 -0.2

6 1 0 0.2 1 0 0.2

7 1 0 0.6 1 0 0.6

8 1 0 i.0 1 0 1.0

9 1 0 1.4 1 0 1.4

10 1 0 1.8 1 0 1.8

11 0 1 -2.0 0 0.6 -1.0

12 0 1 -1.0 0 0.6 1.0

13 0 1 0.0 0 1.4 -1.0

14 0 1 1.0 0 1.4 0.0

15 0 1 2.0 0 1.4 1.0

G
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Table 3

P -values of the Martin-LOf 70 and Andersen's log-likelihood

ratio test of the top-down and bottom-up algorithms for data

set 1.

added/

deleted

test statistic

algorithm scale k item x2 LR

baseline 1-10 10 .36 .31

11-15 .66

top-down 1-15 15 .27 .00

14 -6 .13 .00

13 -5 .23 .01

12 -7 .47 .00

1-4,8-11,13-15 11 -12 .91 ___.*

cross-validation 11 .00 .12

bottom-up 4-7 4 .02 .00

5 +3 .05 .96

6 +10 .40 .10

7 +2 .89 .13

8 +8 .80 .04

9 +1 .79 .61

10 +15 .84 .00

11 +12 .09 .00

1-10,12,15 12 +9 .03 .00

cross-validation 12 .00 .14

* Andersen's LR test cannot be computed.
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Table 4

P-values of the Martin-Lof x2 and Andersen's log-likelihood

ratio test of the top-down and bottom-up algorithms for data

set 2.

added/

deleted

test statistic

algorithm scale k item x2 LR

baseline 1-10 10 .61 .83

11-15 5 .70 96

top-down 1 -15 15 .00 .00

14 -2 .00 .00

13 -5 .01 .01

12 -7 .04 .00

11 -4 .24 .00

10 -6 .34
___.*

1,8-15 9 -3 .87
___*

cross-validation 9 .10 .03

bottom-up 4-7 4 .99 .96

5 +9 .95 .81

6 +10 .95 .73

7 +3 .92 .63

8 +1 .95 .68

9 +2 .88 .45

10 +15 .93 .77

11 +8 .81 .24

1-11,15 12 +11 .89 .09

cross-validation 12 .14 .01

* Andersen's LR test cannot be computed.

0 o
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Table 5

P-values of the Martin-Ltif x2 and Andersen's log-likelihood

ratio test of the top-down and bottom-up algorithms for data

set 3,

added/

deleted

test statistic

algorithm scale k item x2 LR

baseline 1-10 10 .94 .46

top-down 1-15 15 .00 .00

14 -14 .00 .00

13 -12 .01 .00

12 -13 .06 .03

11 -11 .69 .64

1-10 10 -15 .94 .46

cross-validation 10 .57 .24

bottom-up 4-7 4 .78 .91

5 +8 .75 .91

6 +3 .95 .98

7 +1 .99 .83

8 +2 .99 .50

9 +10 .99 .73

10 +14 .35 .57

1-10,14 11 +9 .18 .29

cross-validation 11 .33 .05

9nt,
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Table 6

P-values of the Martin-Lof x2 and Andersen's log-likelihood

ratio test of the top-down and bottom-up algorithms for data

set 4.

added/

deleted

test statistic

algorithm scale k item x2 LR

baseline 1-10 10 .48 .67

top-down 1-15 15 .16 .06

14 -7 .17 .01

13 -3 .25 .02

12 -15 .17 .06

11 -12 .28 .06

10 -4 .24 .07

1.2,5.8-11.13.14 9 -6 .87 .85

cross-validation 9 .88 .14

bottom-up 4-7 4 .14 .82

5 +9 .38 .95

6 +11 .92 .95

7 +3 .78 .78

8 +15 .71 .39

9 +8 .66 .33

10 +10 .75 .78

3-11.13.15 11 +13 .31 .02

cross-validation 11 .64 .63
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Table 7

P -values of the Martin-Idf 7c2 and Andersen's log-likelihood

ratio test of the top-down and bottom-up algorithms for data

set 5,

added/

deleted

test statistic

algorithm scale k item 2X LR

baseline 1-10 10 .49 .42

11-15 5 .27

top-down 1-15 15 .00 .00

14 -8 .00 .00

13 -4 .00 .00

12 -7 .00 .00

11 -3 .04 .00

10 -5 .04 .00

9 -12 .09 .00

8 -13 .00 .00

7 -14 .00 .00

6 -15 .00 .00

1.2.6.9.10 5 -11 .87 .68

cross-validation 5 .75
__*

bottom-up 4-7 4 .46 .29

5 +3 .95 .55

6 +8 .76 .44

7 +1 .78 .44

8 +9 .35 .52

9 +10 .22 .24

1-10 10 +2 .49 .42

cross-validation 10 .75 .60

* Andersen's LR test cannot be computed.
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Table 8

P-values of the Martin-L8f 7c2 and Andersen's log-likelihood

ratio test of the top-down and bottom-up algorithms for data

set 6.

added/ test statistic

deleted

algorithm scale k item X
2 LR

baseline 1-10 10 .31 .70

top-down 1-15 15 .00 .00

14 -15 .00 .00

13 -14 .00 .00

12 -7 .00 .00

11 -4 .00 .00

10 -6 .00 .00

9 -5 .00 .00

8 -3 .00 .05

7 -9 .67 .40

6 -2 .01 .35

5 -13 .00 .08

4 -8 .31 .87

1,11,12 3 -10 .09 .10

cross-validation 3 .63 .56

bottom-up 4-7

1-10

cross-validation

4 .65 .73

5 +8 .63 .69

6 +2 .53 .54

7 +1 .41 .29

8 +10 .26 .37

9 +9 .49 .53

10 +3 .31 .70

10 .77 .63
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